TGS 842 - for the detection of Methane

Features:

- * High sensitivity to Methane
- * Long-term stability
- * Low sensitivity to alcohol vapors
- * Uses simple electrical circuit

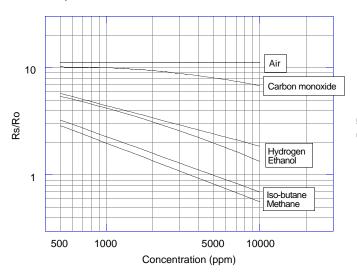
Applications:

- * Domestic gas alarms for the detection of methane
- * Portable gas detectors

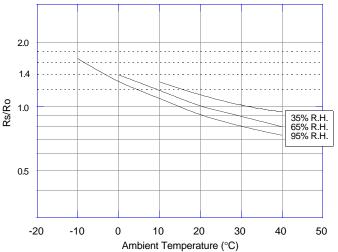
The sensing element of Figaro gas sensors is a tin dioxide (SnO_2) semiconductor which has low conductivity in clean air. In the presence of a detectable gas, the sensor's conductivity increases depending on the gas concentration in the air. A simple electrical circuit can convert the change in conductivity to an output signal which corresponds to the gas concentration.

The **TGS 842** has high sensitivity and selectivity to methane. Due to its low sensitivity to alcohol vapors and its low temperature/humidity dependency, the sensor can achieve good reproducibility, making it ideal for domestic gas alarms.

The figure below represents typical sensitivity char-acteristics, all data having been gathered at standard test conditions (see reverse side of this sheet). The Y-axis is indicated as *sensor resistance ratio* (Rs/Ro) which is defined as follows:

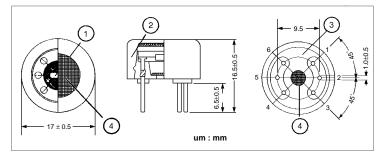

Rs = Sensor resistance of displayed gases at various concentrations

Ro = Sensor resistance in 3500ppm methane


The figure below represents typical temperature and humidity dependency characteristics. Again, the Y-axis is indicated as *sensor resistance ratio* (Rs/Ro), defined as follows:

Rs = Sensor resistance at 3500ppm of methane at various temperatures/humidities Ro = Sensor resistance at 3500ppm of methane at 20°C and 65% R.H.

Sensitivity Characteristics:

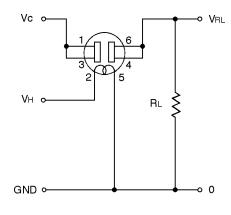

Temperature/Humidity Dependency:

FIGARO

Structure and Dimensions:

Pin Connection and Basic Measuring Circuit:

The numbers shown around the sensor symbol in the circuit diagram at the right correspond with the pin numbers shown in the sensor's structure drawing (*above*). When the sensor is connected as shown in the basic circuit, output across the Load Resistor (V_{RL}) increases as the sensor's resistance (Rs) decreases, depending on gas concentration.


gas concentration. Standard Circuit Conditions:

ltem	Symbol	Rated Values	Remarks
Heater Voltage	Vн	5.0±0.2V	AC or DC
Circuit Voltage	Vc	Max. 24V	AC or DC *PS≤15mW
Load Resistance	R∟	Variable	*PS≤15mW

(1) Sensing Element:

- SnO₂ is sintered to form a thick film on the surface of an alumina ceramic tube which contains an internal heater.
- ② Cap:
 - Nylon 66
- ③ Sensor Base:
- Nylon 66 ④ Flame Arrestor:
 - 100 mesh SUS 316 double gauze

Basic Measuring Circuit:

Electrical Characteristics:

Item	Symbol	Condition	Specification
Sensor Resistance	Rs	Methane at 1000ppm/air	3kΩ ~ 15kΩ
Change Ratio of Sensor Resistance	Rs/Ro	<u>Rs (Methane at 3000ppm/air)</u> Rs (Methane at 1000ppm/air)	0.55 ± 0.05
Heater Resistance	Rн	Room temperature	$30.0\pm3.0\Omega$
Heater Power Consumption	Рн	VH=5.0V	835 ± 90 mW

Standard Test Conditions:

TGS 842 complies with the above electrical characteristics when the sensor is tested in standard conditions as specified below:

 $\begin{array}{ll} \mbox{Test Gas Conditions:} & 20^\circ\pm2^\circ C, \mbox{65}{\pm}5\%\mbox{R.H.} \\ \mbox{Circuit Conditions:} & \mbox{Vc} = 10.0{\pm}0.1\mbox{V} \mbox{ (AC or DC)}, \\ \mbox{VH} = 5.0{\pm}0.05\mbox{V} \mbox{ (AC or DC)}, \\ \mbox{RL} = 4.0\mbox{k}\Omega{\pm}1\% \\ \end{array}$

Preheating period before testing: More than 7 days

FIGARO USA, INC. 3703 West Lake Ave. Suite 203 Glenview, Illinois 60025 Phone: (847)-832-1701 Fax: (847)-832-1705 email: figarousa@figarosensor.com Sensor Resistance (Rs) is calculated by the following formula:

$$Rs = \left(\frac{V_{C}}{V_{RL}} - 1\right) \times RL$$

Power dissipation across sensor electrodes (Ps) is calculated by the following formula:

$$Ps = \frac{V_c^2 \times Rs}{(Rs + RL)}$$