TGS 830 - for the detection of Chlorofluorocarbons (CFC's)

Features:

- * High sensitivity to R-113, R-22, R-11, and R-12
 * Low sensitivity to hydrogen and alcohol vapors
 * Uses simple electrical circuit
- * Ceramic base resistant to severe environment

The sensing element of Figaro gas sensors is a tin dioxide (SnO₂) semiconductor which has low conductivity in clean air. In the presence of a detectable gas, the sensor's conductivity increases depending on the gas concentration in the air. A simple electrical circuit can convert the change in conductivity to an output signal which corresponds to the gas concentration.

The **TGS 830** has high sensitivity to R-22 as well as to R-11, R-12, and R-113. Due to its low sensitivity to hydrogen and alcohol vapors, the sensor can achieve good selectivity. Combined with its long life, this makes TGS 830 an excellent, low-cost sensor for CFC detection.

The figure below represents typical sensitivity char-acteristics, all data having been gathered at standard test conditions (see reverse side of this sheet). The Y-axis is indicated as *sensor resistance ratio* (Rs/Ro) which is defined as follows:

Rs = Sensor resistance of displayed gases at various concentrations

Ro = Sensor resistance at 1000ppm of R-22

The figure below represents typical temperature and humidity dependency characteristics. Again, the Y-axis is indicated as *sensor resistance ratio* (Rs/Ro), defined as follows:

Rs = Sensor resistance at 1000ppm of R-22 at various temperatures/humidities Ro = Sensor resistance at 1000ppm of R-22 at 20°C and 65% R.H.

Temperature/Humidity Dependency:

Sensitivity Characteristics:

Applications:

* Refrigerant leak detectors

FIGARO

Structure and Dimensions:

Pin Connection and Basic Measuring Circuit:

The numbers shown around the sensor symbol in the circuit diagram at the right correspond with the pin numbers shown in the sensor's structure drawing (*above*). When the sensor is connected as shown in the basic circuit, output across the Load Resistor (V_{RL}) increases as the sensor's resistance (Rs) decreases, depending on gas concentration.

① Sensing Element:

SnO₂ is sintered to form a thick film on the surface of an alumina ceramic tube which contains an internal heater.

- 2 Sensor Base:
 - Alumina ceramic
- ③ Flame Arrestor:

100 mesh SUS 316 double gauze

Basic Measuring Circuit:

Standard Circuit Conditions:

Item	Symbol	Rated Values	Remarks
Heater Voltage	Vн	5.0±0.2V	AC or DC
Circuit Voltage	Vc	Max. 24V	AC or DC *PS≤15mW
Load Resistance	R∟	Variable	*PS≤15mW

Electrical Characteristics:

Item	Symbol	Condition	Specification
Sensor Resistance	Rs	R-22 at 1000ppm/air	1kΩ ~ 5kΩ
Change Ratio of Sensor Resistance	Rs/Ro	Rs (R-22 at 3000ppm/air) Rs (R-22 at 1000ppm/air)	0.30 ± 0.10
Heater Resistance	Rн	Room temperature	$30.0\pm3.0\Omega$
Heater Power Consumption	Рн	VH=5.0V	$835\pm90\text{mW}$

Standard Test Conditions:

TGS 830 complies with the above electrical characteristics when the sensor is tested in standard conditions as specified below:

 $\begin{array}{ll} \mbox{Test Gas Conditions:} & 20^\circ\pm2^\circ C, \mbox{65}\pm5\%\mbox{R.H.} \\ \mbox{Circuit Conditions:} & Vc = 10.0\pm0.1V \mbox{ (AC or DC)}, \\ \mbox{VH} = 5.0\pm0.05V \mbox{ (AC or DC)}, \\ \mbox{RL} = 10.0k\Omega\pm1\% \\ \end{array}$

Preheating period before testing: More than 7 days

FIGARO USA, INC. 3703 West Lake Ave. Suite 203 Glenview, Illinois 60025 Phone: (847)-832-1701 Fax: (847)-832-1705 email: figarousa@figarosensor.com Sensor Resistance (Rs) is calculated by the following formula:

$$Rs = \left(\frac{V_{C}}{V_{RL}} - 1\right) \times R_{L}$$

Power dissipation across sensor electrodes (Ps) is calculated by the following formula:

$$Ps = \frac{V_c^2 \times Rs}{(Rs + RL)}$$